Bioremediation

Image

Bioremediation

Bioremediation is the use of living microorganisms to degrade the environmental contaminants into less toxic forms. It uses naturally occurring bacteria and fungi or plants to degrade or detoxify substances hazardous to human health and/or the environment. The microorganisms may be indigenous to a contaminated area or they may be isolated from elsewhere and brought to the contaminated site. Contaminant compounds are transformed by living organisms through reactions that take place as a part of their metabolic processes. Biodegradation of a compound is often a result of the actions of multiple organisms. Bioremediation can be effective only where environmental conditions permit microbial growth and activity. The application often involves the manipulation of environmental parameters to allow microbial growth and degradation to proceed at a faster rate.

Salient features:

  • It is cost effective. No construction or additional infrastructure is required. 
  • These microbes are effective in controlling odour, reducing TSS, BOD, oil/ grease accumulation in sewage/ polluted water and solids.
  • These microbial consortia exhibit growth at wider temperature range
  • These strains maintains a satisfactory level of DO and therefore aerators, which consume high power can be avoided or its use can be reduced.
  • Control the nutrient level in water thus help in controlling “Eutrophication” process.

Most bioremediation processes involve oxidation-reduction reactions where either an electron acceptor (commonly oxygen) is added to stimulate oxidation of a reduced pollutant (e.g. hydrocarbons) or an electron donor (commonly an organic substrate) is added to reduce oxidized pollutants (nitrate, perchlorate, oxidized metals, chlorinated solvents, explosives and propellants). In both these approaches, additional nutrients, vitamins, minerals, and pH buffers may be added to optimize conditions for the microorganisms. In some cases, specialized microbial cultures are added (bioaugmentation) to further enhance biodegradation. Some examples of bioremediation related technologies are phytoremediation, mycoremediation, bioventing, bioleaching, landfarming, bioreactor, composting, bioaugmentation, rhizofiltration, and biostimulation.

Limitation:

Bioremediation can be used to completely mineralize organic pollutants, to partially transform the pollutants, or alter their mobility. Heavy metals and radionuclides are elements that cannot be biodegraded, but can be bio-transformed to less mobile forms. In some cases, microbes do not fully mineralize the pollutant, potentially producing a more toxic compound. For example, under anaerobic conditions, the reductive dehalogenation of TCE may produce dichloroethylene (DCE) and vinyl chloride (VC), which are suspected or known carcinogens. However, the microorganism Dehalococcoides can further reduce DCE and VC to the non-toxic product ethene. Additional research is required to develop methods to ensure that the products from biodegradation are less persistent and less toxic than the original contaminant. Thus, the metabolic and chemical pathways of the microorganisms of interest must be known. In addition, knowing these pathways will help develop new technologies that can deal with sites that have uneven distributions of a mixture of contaminants.

Media Contact:
Liza Parker
Journal Manager
Microbiology: Current Research
Whatsapp no.-  +1(504)608-2390
Email: aamcr@microbialjournals.com
Submit manuscript: https://www.scholarscentral.org/submissions/microbiology-current-research.html